150 research outputs found

    Interference Alignment for the Multi-Antenna Compound Wiretap Channel

    Full text link
    We study a wiretap channel model where the sender has MM transmit antennas and there are two groups consisting of J1J_1 and J2J_2 receivers respectively. Each receiver has a single antenna. We consider two scenarios. First we consider the compound wiretap model -- group 1 constitutes the set of legitimate receivers, all interested in a common message, whereas group 2 is the set of eavesdroppers. We establish new lower and upper bounds on the secure degrees of freedom. Our lower bound is based on the recently proposed \emph{real interference alignment} scheme. The upper bound provides the first known example which illustrates that the \emph{pairwise upper bound} used in earlier works is not tight. The second scenario we study is the compound private broadcast channel. Each group is interested in a message that must be protected from the other group. Upper and lower bounds on the degrees of freedom are developed by extending the results on the compound wiretap channel.Comment: Minor edits. Submitted to IEEE Trans. Inf. Theor

    Secure Transmission with Multiple Antennas II: The MIMOME Wiretap Channel

    Full text link
    The capacity of the Gaussian wiretap channel model is analyzed when there are multiple antennas at the sender, intended receiver and eavesdropper. The associated channel matrices are fixed and known to all the terminals. A computable characterization of the secrecy capacity is established as the saddle point solution to a minimax problem. The converse is based on a Sato-type argument used in other broadcast settings, and the coding theorem is based on Gaussian wiretap codebooks. At high signal-to-noise ratio (SNR), the secrecy capacity is shown to be attained by simultaneously diagonalizing the channel matrices via the generalized singular value decomposition, and independently coding across the resulting parallel channels. The associated capacity is expressed in terms of the corresponding generalized singular values. It is shown that a semi-blind "masked" multi-input multi-output (MIMO) transmission strategy that sends information along directions in which there is gain to the intended receiver, and synthetic noise along directions in which there is not, can be arbitrarily far from capacity in this regime. Necessary and sufficient conditions for the secrecy capacity to be zero are provided, which simplify in the limit of many antennas when the entries of the channel matrices are independent and identically distributed. The resulting scaling laws establish that to prevent secure communication, the eavesdropper needs 3 times as many antennas as the sender and intended receiver have jointly, and that the optimimum division of antennas between sender and intended receiver is in the ratio of 2:1.Comment: To Appear, IEEE Trans. Information Theor

    The MIMOME Channel

    Full text link
    The MIMOME channel is a Gaussian wiretap channel in which the sender, receiver, and eavesdropper all have multiple antennas. We characterize the secrecy capacity as the saddle-value of a minimax problem. Among other implications, our result establishes that a Gaussian distribution maximizes the secrecy capacity characterization of Csisz{\'a}r and K{\"o}rner when applied to the MIMOME channel. We also determine a necessary and sufficient condition for the secrecy capacity to be zero. Large antenna array analysis of this condition reveals several useful insights into the conditions under which secure communication is possible.Comment: In Proceedings of the 45th Annual Allerton Conference on Communication, Control, and Computing, October 2007, 8 page
    • …
    corecore